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We apply the statistical measure of complexity, introduced by López-Ruiz, Mancini, and Calbet �LMC�, to
uniform Fermi systems. We investigate the connection between information and complexity measures with the
strongly correlated behavior of various Fermi systems as nuclear matter, electron gas, and liquid helium. We
examine the possibility that LMC complexity can serve as an index quantifying correlations in the specific
system and to which extent could be related with experimental quantities. Moreover, we concentrate on thermal
effects on the complexity of ideal Fermi systems. We find that complexity behaves, both at low and high values
of temperature, in a similar way as the specific heat.
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I. INTRODUCTION

Information theory, introduced by Shannon in 1948 to
provide answers for some fundamental aspects of communi-
cations �1�, celebrates its first massive application in a quan-
tum system, i.e., atoms, almost four decades later �2�. In his
seminal work, Gadre stated that information theory is a hid-
den treasure yet to be discovered, which is still true. His
prediction has been justified over the past twenty years by
the extended applications of information-theoretic methods
�1,3–6�, in various quantum systems. Information-theoretical
methods play an important role, not just in the clarification of
fundamental concepts of quantum mechanics, but also pro-
vide a series of results concerning the information content of
systems, the presence of interactions, correlation with experi-
mental measured quantities, extraction of universal relations,
etc. �2,7–21�. Additionally, many complexity measures have
been proposed as indicators of complex behavior found in
different systems scattered in a broad spectrum of fields
�22–47�.

The statistical measure of complexity CLMC introduced by
López-Ruiz, Calbet, and Mancini �LMC� �22� identifies the
entropy or information stored in a system and its distance to
the equilibrium probability distribution as the two basic in-
gredients giving the correct asymptotic properties of a well-
behaved measure of complexity. So far, several complexity
measures have been proposed as indicators of complex be-
havior in various systems, mostly coming from physics,
computational sciences, etc. The LMC measure of statistical
complexity is an easily calculable measure �compared with
other definitions, e.g., Kolmogorov’s one�, defined in the
form of the product CLMC=SD, combining information S and
disequilibrium D. It has indeed the features and asymptotical
properties that one expects intuitively. It vanishes for the two
extreme cases of a perfect crystal �perfect order� and ideal
gas �perfect disorder�. The initial definition of CLMC has been
slightly modified in a suitable way by Catalan et al. �23�,
leading to the form C=eSD applicable to systems described
by either discrete or continuous probability distributions. In
�23�, it was shown that the results in both, discrete and con-
tinuous cases, are consistent: extreme values of C are ob-
served for distributions characterized by a peak superim-

posed onto a uniform sea. Moreover, C should be minimal,
when the system reaches equipartition and the minimum
value of C is attained for rectangular �uniform� density prob-
abilities giving the value C=1. Additionally, C is not an up-
per bounded function and can become infinitely large.

LMC complexity is referred to in the literature as shape
complexity, since it exhibits larger values for complicated
patterns of probabilities, as seen, in a first step, intuitively
and by inspecting the plots. The first investigation of CLMC in
quantum many-body systems was carried out in atoms, for
continuous electron distributions �33� and discrete ones �34�.
An alternative definition of complexity is the Shiner, Davi-
son, and Landsberg �SDL� measure ��� �26�, defined and
calculated in an analogous way as the LMC one. It has been
applied in atoms as well, starting from �32�. Comments on
the validity of SDL and LMC measures are given in detail in
Section 4 of �33�, where it is stated that a welcome property
of a definition of complexity might be the following: if one
complicates the system by varying some of its parameters,
and this leads to an increase in the adopted measure of com-
plexity, then one could argue that this measure describes the
complexity of the system properly.

The modified version C=eSD, also known as shape com-
plexity, satisfies some additional and desirable features such
as positivity, invariance under translations, rescaling trans-
formations, and replication. Also, another indication of its
internal consistency is the fact that the first two q values of
the Rényi entropy �48� are the two defining elements of
shape complexity, i.e., eS and D �49�. The usefulness of the
improved version has been shown in many fields �29–45�.
Moreover, the specific measure is suitably tailored for quan-
tum systems, described by their very nature probabilistically
via density distributions in position and momentum spaces,
which are necessary for and enable a relatively easy calcula-
tion of S and D, entering the formulas CLMC=SD or C
=eSD.

The motivation of the present work, in the spirit of the
above statements, is to extend our previous study of uniform
Fermi systems �16�, beyond information entropy, in order to
include the complexity measure proposed by López-Ruiz et
al. �22�, using probability distributions in momentum space.
In uniform systems, the density �=N /V is a constant and the
interaction of the particles is reflected to the momentum dis-
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tribution, which deviates, from the theta function form of the
ideal Fermi-gas model. Our aim is to connect C, a measure
based on a probabilistic description and the shape of the
corresponding momentum distributions to the phenomeno-
logical parameters introducing the interparticle correlations
and experimental data �e.g., specific heat�. It is important to
examine how the interaction affects the momentum distribu-
tion as well as the complexity. An attempt is also made to
relate the complexity C with statistical quantities such as the
temperature.

The complexity C cannot be measured experimentally, but
it is possible, as we demonstrate here, to calculate it, starting
from a reasonable definition �LMC or SDL� and in our case,
by employing an information-theoretic method, developed in
previous work �16�. Experiment can enter our work through
the experimentally measured momentum distribution n�k�.
Momentum distributions n�k� can be assessed experimentally
�e.g., in nuclear matter and liquid helium� via deep inelastic
scattering at a large momentum transfer. The extraction of
n�k� from the measured scattering intensity is influenced by
the limitations imposed by the experimental resolution and
the final-state interaction. Hence, the most accurate informa-
tion on n�k� available to date is likely to be one obtained
through accurate theoretical calculations, aided by experi-
mental input.

In the present work, the quantum systems under examina-
tion are nuclear matter, electron gas, and liquid 3He. The
interparticle interactions of these systems differ in general by
many orders of magnitude in strength and range. The corre-
sponding potentials, scaled under suitable energy and length
measures for the different systems, i.e., Fermi energy and
inverse Fermi momentum, still differ by orders of magnitude.
The 3He system is the most strongly interacting one at short
distances with an almost-hard-core interaction, while elec-
tron gas is the most weakly interacting. Nuclear matter lies
somewhere in between. Helium and nuclear potentials have
relatively weak attractive tails. The electronic potential is
quite different. It has a weak core �compared with 3He and
nuclear matter�, but its rate of decrease for large r is slow.
Thus, at large distances, the electronic potential is stronger
than the other two.

Furthermore, the density under investigation affects the
assessment of the effect of strong versus weak interaction.
Characteristic is the example of the electron gas, which is
distinguished from other systems by the long range nature of
the Coulomb interaction. As a result, strong coupling pre-
vails in the limit of low density for electron gas, whereas
helium and nuclear systems become more strongly interact-
ing for higher density regions. In all cases, the strength of the
interaction may be gauged by the depletion of the Fermi sea.
Quantitatively, this can be assessed as the deviation of ZF
from unity, where ZF is the discontinuity gap of the momen-
tum distribution n�k� at k=kF, in a uniform Fermi system.
The problem of discontinuity of the momentum distribution
is examined for Fermi liquids by Migdal �50�. It is shown
that the discontinuity in the momentum distribution at k
=kF is an inherent consequence of an arbitrary interaction
between particles in an infinite system.

The paper is organized as follows. In Sec. I, we present
the method leading to the expressions of momentum distri-

bution, information content, and complexity measures in fi-
nite Fermi systems. Applications of that expression to
nuclear matter, electron gas, and liquid 3He are made in the
three sections of Sec. II. In the same sections, numerical
results are also reported and discussed. In Sec. III, the study
of the influence of thermal effects on the complexity is made.
Finally, the concluding remarks and a summary of the
present work are given in Sec. IV.

II. MOMENTUM DISTRIBUTION, INFORMATION
ENTROPY, AND COMPLEXITY

The one-body density matrix is the key quantity for the
description of the momentum distribution, both in infinite
and finite quantum systems. It is defined as

��r1,r1�� =� ���r1,r2, . . . ,rN���r1�,r2, . . . ,rN�dr2, . . . ,drN.

�1�

The diagonal elements ��r1 ,r1� of the density matrix yield
the local density distribution, which is just a constant � in the
case of a uniform infinite system. Homogeneity and isotropy
of the system require that ��r1 ,r1��=���r1−r1������r�.

The momentum distribution for fermions is defined by

n�k� = �−1� ��r�eikrdr , �2�

where � is the single-particle level degeneracy

� = �2 for electron gas and liquid 3He

4 for nuclear matter.
	

The normalized momentum distribution,

� n�k�dk = 1,

is given by the relation

n�k� =
1

Vk
ñ�k� =

1

Vk
�ñ−�k� , k 	 kF

ñ+�k� , k 
 kF,
	 �3�

where Vk= 4
3�kF

3 . The Fermi wave number kF is related with
the constant density �=N�0=3 / �4�r0

3� as follows:

kF = 
6�2�

�
�1/3

= 
9�

2�

1

r0
3�1/3

. �4�

In the case of an ideal Fermi gas, the momentum distribution
has the form

n0�k� =
1

Vk
��kF − k� . �5�

The information entropy in momentum space is given by the
relation

Sk = −� n�k�ln n�k�dk . �6�

So, for an ideal Fermi gas, using Eq. �5�, Sk becomes
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Sk = S0 = ln Vk = ln
6�2

�

1

r0
3� . �7�

For correlated Fermi systems, the information entropy in
momentum space, can be found from Eq. �6� if we replace
n�k� from Eq. �3�. Sk is written now �16�

Sk = ln Vk −
4�

Vk

�

0

kF
−

k2ñ−�k�ln ñ−�k�dk

+ �
kF

+



k2ñ+�k�ln ñ+�k�dk� . �8�

The correlated entropy Sk has the form

Sk = S0 + Scor, �9�

where S0 is the uncorrelated entropy given by Eq. �7� and
Scor is the contribution of the particles correlations to the
entropy. That contribution can be found from the expression

Scor = − 3
�
0

1−

x2ñ−�x�ln ñ−�x�dx + �
1+



x2ñ+�x�ln ñ+�x�dx� ,

�10�

where x=k /kF.
The disequilibrium Dk �or information energy, defined by

Onicescu �3��, in momentum space is defined as

Dk =� n2�k�dk , �11�

and for an ideal Fermi gas, using Eq. �5�, becomes

Dk = D0 =
1

Vk
. �12�

In the case of correlated Fermi systems, Dk is written as

Dk =
1

Vk

4�

Vk

�

0

kF
−

k2ñ−
2�k�dk + �

kF
+



k2ñ+
2�k�dk� . �13�

The correlated disequilibrium Dk has the form

Dk = D0Dcor, �14�

where D0 is given in Eq. �12� and Dcor can be found from the
expression

Dcor = 3
�
0

1−

x2n−
2�x�dx + �

1+



x2n+
2�x�dx� . �15�

The LMC statistical measure of complexity CLMC, in mo-
mentum space, is defined as �22�

CLMC = SkDk,

where Sk is the Shannon information entropy, while Dk is the
disequilibrium of the system under investigation �in momen-
tum space�.

The modified version of the complexity, proposed by
Catalan et al. �23�, in momentum space, is defined as

C = HkDk, �16�

where Hk represents the information content of the system
defined as

Hk = eSk, �17�

and ensures positivity of information under any circum-
stances.

It is easy to show that

C = C0Ccor = eScorDcor, C0 = eS0D0 = 1. �18�

The physical meaning of Eq. �18� is clear. In the case of an
ideal Fermi gas �see Eq. �5��, C is minimal with value C0
=1 �see also �23��. Moreover, as pointed out in Ref. �23�, C
is not an upper bounded function and can, therefore, become
infinitely large. From the above analysis, it is clear that com-
plexity C is an accounter of correlations in an infinite Fermi
system. So, the next step is to try to find the connection
between C and the correlation parameters of the systems.
The correlations invoke diffusion of the momentum distribu-
tion and we expect this effect to be reflected on the values of
C.

Here, we apply the low order approximation of the mo-
mentum distribution in the case of the nuclear matter
�51–53�. For liquid 3He and electron gas, we use the most
updated calculations for the momentum distribution, that is,
the results of Moroni et al. �54� and Gori-Giorgi and Ziesche
�55�, respectively. Also, we would like to stress out the fact
that our main goal is the accurate calculation of the corre-
lated part of information and complexity measures, based on
reliable data, and not the detailed analysis of the momentum
distribution itself.

A. Nuclear matter

The model we study is based on the Jastrow ansatz for the
ground state wave function of nuclear matter

��r1,r2, . . . ,rN� = �
1�i�j�N

f�rij���r1,r2, . . . ,rN� , �19�

where rij = �ri−r j�, � is a Slater determinant �here, of plane
waves with appropriate spin-isospin factors, filling the Fermi
sea�, and f�r� is a state-independent two-body correlation
function. Thus, the correlation function is taken to be of the
Jastrow type �56�

f�r� = 1 − exp�− �2r2� , �20�

where � is the correlation parameter. A cluster expansion for
the one-body density matrix ��r1 ,r1�� has been derived by
Gaudin and co-workers �51–53� for the Jastrow trial function
�19�.

In the low order approximation, the momentum distribu-
tion is constructed as �53�

nLOA�k� = ��kF − k��1 − kdir + Y�k,8��

+ 8�kdirY�k,2� − �Y�k,4��2� , �21�

where
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c�
−1Y�k,�� =

e−k̃+
2

− e−k̃−
2

2k̃
+ �

0

k̃+
e−y2

dy + sgn�k̃−��
0

�k̃−�
e−y2

dy ,

�22�

and

c� =
1

8�

�

2
�3/2

, k̃ =
k

��
, k̃� =

kF � k

��
, � = 2,4,8,

�23�

while sgn�x�=x / �x�. The dimensionless Jastrow wound pa-
rameter kdir can serve as a rough measure of correlations and
the rate of convergence of the cluster expansion is defined as

kdir = �� �f�r� − 1�2dr . �24�

The normalization condition for the momentum distribution
is

�
0



nLOA�k�k2dk =
1

3
kF

3 . �25�

From Eq. �24�, we obtain the following relation between the
wound parameter kdir and the correlation parameter �:

kdir =
1

32�

 kF

�
�3

. �26�

It is clear that large values of kdir imply strong correlations
and poor convergence of the cluster expansion. In the nu-
merical calculations, the correlation parameter � is in the
interval: 1.01���2.482. That range corresponds to 0.3
�kdir�0.02 and is reasonable in the case of nuclear matter
�53�.

The calculated values of Scor, Dcor, and C for nuclear mat-
ter versus wound parameter kdir are displayed in Fig. 1. Scor
and C increase with kdir, while Dcor decreases. We fitted the
numerical values of the above quantities, with simple func-
tions of kdir and we find, respectively, the following formu-
las:

Scor = �kdir
� , � = 2.0586, � = 0.6365. �27�

Dcor = 1 + �kdir
� , � = − 0.9009, � = 0.8325. �28�

C = 1 + �kdir
� e�kdir, � = 3.1760, � = 0.8257,

� = − 1.6176. �29�

The values of the parameters �, �, and �, for each case, have
been selected by a least-squares fit �LSF� method.

Another characteristic quantity, used as a measure of the
strength of correlations of the uniform Fermi systems, is the
discontinuity, ZF, of the momentum distribution at k /kF=1.
It is defined as

ZF = n�1−� − n�1+� .

The behavior of momentum distribution, as a function of
k /kF for various values of the wound parameter kdir, is indi-
cated in Fig. 2�a�. The discontinuity ZF is also displayed in
each case. For ideal Fermi systems ZF=1, while for interact-
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FIG. 1. Scor, Dcor, and C of nuclear matter versus the correlation
parameter kdir. The lines correspond to the expressions �27�–�29�,
with the parameters derived by the least-squares fit method.
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FIG. 2. �a� The momentum distribution for correlated nuclear matter versus k /kF for various values of the correlation parameter kdir. �b�
The momentum distribution of an ideal electron gas versus k /kF for various values of the ratio T /TF.
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ing ones ZF	1. In the limit of very strong interaction ZF
=0, there is no discontinuity on the momentum distribution
of the system. The quantity �1−ZF� measures the ability of
correlations to deplete the Fermi sea by exciting particles
from states below it �hole states� to states above it �particle
states� �53�.

The dependence of Scor, Dcor, and C on the quantity �1
−ZF� is shown in Fig. 3. It is seen that Scor and C are increas-
ing functions of �1−ZF�, while Dcor is a decreasing one, as a
direct consequence of the dependence of the above quanti-
ties, on the correlation parameter kdir. That dependence can
be reproduced very well by simple expressions as in Eqs.
�27�–�29� replacing kdir by �1−ZF�. For example, the expres-
sion

C�ZF� = 1 + ��1 − ZF��e��1−ZF� �30�

with �=3.6227, �=0.8024, and �=−1.9750 reproduces the
numerical values of C very well.

From the above analysis, we can conclude that LMC com-
plexity C can be employed as a measure of the strength of
correlations in the same way the wound and the discontinuity
parameters are used. An explanation of the above behavior of
C is the following: the effect of nucleon correlations is the
departure from the step function form of the momentum dis-
tribution �ideal Fermi gas� to the one with long tail behavior
for k
kF. The diffusion of the distribution leads to a de-
crease in the order of the system �the disequilibrium Dk de-

creases and the information entropy Sk increases accord-
ingly�. In total, the contribution of Sk in C dominates over
the contribution of Dk and thus the complexity increases with
the correlations �at least in the region under consideration�.

B. Electron gas

We consider as electron gas, a system of fermions inter-
acting via a Coulomb potential. The electron gas is a model
of conduction electrons in a metal, where the periodic posi-
tive potential due to the ions is replaced by a uniform charge
distribution. The density of the uniform electron gas �Jel-
lium� is �=3 / �4�ro

3� and the momentum distribution is
n�x ,rs�, a function of both x=k /kF and rs=ro /aB �where aB
=�2 /me2 is the Bohr radius�. In the Fermi liquid regime, the
momentum distribution of the unpolarized uniform electron
gas n�x ,rs� is constructed with the help of the convex Kulik
function G��� �55�.

Discontinuity ZF�rs� is unit for rs=0 and it is a decreasing
function of interaction strength rs, as rs increases. The dis-
continuity gap of the momentum distribution n�k� at the
Fermi surface narrows as the density decreases, a clear indi-
cation that the system becomes more strongly coupled. That
behavior is due to the fact that the screening of the long-
range Coulomb interaction between the electrons becomes
less effective at lower density. Nuclear matter and atomic
3He exhibit an inverse behavior, where the basic interactions
are of short range and ZF decreases as the density increases.
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FIG. 3. �a� Scor, �b� Dcor, and �c� C for nuclear matter, electron gas, and liquid helium versus the discontinuity parameter �1−ZF�. In the
case of liquid helium, the values of Scor are divided by 10 and the values of C by 100.
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At large rs, electrons form a Wigner crystal with a smooth
n�x ,rs�. Interaction strength rs�1 is the weak-correlation
limit and rs�1 is the strong-correlation limit, respectively.
For intermediate values of rs, a non-Fermi liquid regime may
exist with ZF=0 �55�.

We examine the dependence of Scor, Dcor, and C for the
electron gas on the correlation parameter rs, �or �
=3 / �4�ro

3�� and the discontinuity parameter �1−ZF�. This
dependence is displayed in Fig. 4. It is seen that, as in the
case of nuclear matter, Scor depends on those quantities
through a two parameter expression of the form

Scor�rs� = �rs
�, � = 0.1312, � = 0.8648. �31�

The disequilibrium Dcor takes the form

Dcor = 1 − �rs, � = 0.0463, �32�

and the complexity C behaves as

C = 1 + �rs
�e�rs, � = 0.0700, � = 1.4144, � = − 0.1525.

�33�

The most distinctive feature, in the case of electron gas, is
the occurrence of a maximum of C for high values of the
correlations parameter rs in contrast to the case of nuclear
matter and liquid helium �see bellow�, where C is a mono-
tonic increasing function of correlations. For high values of
rs, the competition between Dcor and eScor �see Eq. �18�� leads
to the dominance of the trend of Dcor. More precisely, the
slope of C is given by

dC

drs
= C
d ln Dcor

drs
+

dScor

drs
� . �34�

Thus, according to Eq. �34�, the sign of the slope of C de-
pends on the sum of the terms

d ln Dcor

drs
and

dScor

drs
�which are

always negative and positive, respectively, when rs in-
creases�. It is easy to show by applying Eqs. �31� and �32� �or
equivalently, but with less accuracy from Eq. �33�� that C
attains a maximum value Cmax�1.4052 at rs�9.589.

The above feature is well reflected also on the 1−ZF de-
pendence of C as exhibited in Fig. 3. �the trend of Scor and
Dcor is also shown�.

Momentum distribution and complexity for the Wigner Crystal

In the low-density limit, rs→, the electron gas under-
goes Wigner crystallization. The momentum distribution of
the localized electron is of harmonic-oscillator type and has
the form

n�k,rs → � = 
1

z

1

�kF
2 �3/2

e−k2/kF
21/z,

4��
0



k2n�k,rs → �dk = 1, �35�

where z=� /kF
2 =0.24rs

1/2 �55�. It is easy to prove that after
some algebra

Scor =
3

2
+ ln

3�1/2

4
+

3

2
ln z . �36�

Additionally, Dcor can be found also from the expression

Dcor =
21/2

3�1/2z−3/2. �37�

From Eqs. �36� and �37�, we find that

C = eScorDcor = 
 e

2
�3/2

� 1.5845. �38�

So, in the low-density limit �very strong correlations�, the
complexity is independent of the correlation parameter rs. As
we show below, the above case is similar to that of an ideal
Fermi gas at high values of temperature.

C. Liquid 3He

The interaction potential for liquid 3He is very strong at
small distances and its core repulsion is very hard �but not
infinite�. Consequently, there is a Fermi surface discontinuity
of roughly ZF�0.3. This small value supports the view that
3He is the most strongly interacting Fermi system of the
three systems considered here. The momentum distribution
has been calculated using diffusion Monte Carlo simulations
with the use of trial functions optimized via the Euler-Monte
Carlo method �54�.

We examine the dependence of Scor, Dcor, and C on the
density �=3 / �4�ro

3� and the discontinuity parameter �1
−ZF�, and we present our results in Fig. 5. The dependence
of Scor on those parameters is described through the follow-
ing simple two parameter formula �as in the cases of electron
gas and nuclear matter�:

Scor��0� = ��0
�, �0 = 100� , �39�

with

� = 2.2736, � = 1.4757,

while the disequilibrium Dcor is described by the function
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FIG. 4. Scor, Dcor, and C of electron gas the correlation param-
eter rs. The lines correspond to the expressions �31�–�33�, with the
parameters derived by the least-squares fit method.
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Dcor =
�

1 + e��0−��/� + �, � = 0.1321, � = 1.6288,

� = 0.1031, � = 0.4062. �40�

The complexity C behaves as

C = 1 + ��0
�e��0, � = 0.0166, � = − 3.1849, � = 5.8556.

�41�

The dependence of Scor, Dcor, and C on the quantity �1
−ZF� is seen in Fig. 3. In order to be able to compare the
results of the various systems, in the case of liquid 3He, the
values of Scor have been divided by 10 and the values of C by
100. The most distinctive feature of the above analysis, in the
various systems, is the different behavior exhibited by Scor,
Dcor, and C as function of �1−ZF�. For the same values of
�1−ZF�, both the values and the trend of these quantities are
different in those systems.

III. THERMAL EFFECTS ON COMPLEXITY
IN ELECTRON GAS

At temperature T=0, the electrons of the electron gas oc-
cupy all the lower available states up to a highest one,
namely, the Fermi level. As the temperature increases, the
electrons of the gas tend to become excited and occupy states
of energy of order kT higher than the Fermi energy. In gen-
eral, the occupation number of the electron gas n��� is given
by the Fermi-Dirac formula

n��� =
1

exp� 1

kBT
�� − ��� + 1

, �42�

where �= p2

2m �p=�k� is the energy of the electrons, kB is the
Boltzmann’s constant, and � is the chemical potential. For
T=0, the chemical potential of a gas coincides with the
Fermi energy �F, which is by definition the energy of the
highest single-particle level occupied at T=0. i.e.,

�F =
�2

2m
�3�2��2/3, �43�

while the Fermi temperature is defined via the relation

�F = kBTF. �44�

We will examine how information and complexity mea-
sures considered in the present study are affected by tem-
perature, when it starts to increase above zero. The limits of
low temperature �quantum regime� and high temperature
�classical regime� are studied separately in the following sec-
tions.

A. Quantum regime (T™TF)

With the term low energy, we refer to the limit T�TF,
since there is only a single characteristic value of tempera-
ture, the Fermi temperature. In a first approximation, the
chemical potential for that limit is �57–59�

� = �F�1 −
�2

12

 T

TF
�2� , �45�

and so Eq. �42� becomes

n�x� =
1

exp�1

�

x2 − 1 +

�2

12
�2�� + 1

, �46�

where x= �� /�F�1/2=k /kF, �=T /TF�1, and �0
x2n�x�dx

=1 /3.
Following the same procedure as in Sec. II, the informa-

tion entropy Sk of the electron gas at temperature T�TF is
written

Sk = S0 + Sthermal, �47�

where S0 is given by Eq. �7� and

Sthermal = − 3�
0



x2n�x�ln n�x�dx . �48�

In a similar way, we find that Dk is written as

Dk = D0Dthermal, �49�

where D0 is given in Eq. �12� and Dthermal can be calculated
also using the expression

Dthermal = 3�
0



x2n2�x�dx . �50�

Finally, it is easy to show that

C = C0Ccor = eSthermalDthermal, C0 = 1. �51�

It is worthwhile to notice that the correlations between the
Fermi particles invoke a discontinuity to the momentum dis-
tribution at k=kF �see Fig. 2�a��, while the thermal effect
causes just a slight deviation from the sharp step function
form at T=0. This is shown in Fig. 2�b�, where the momen-
tum distribution for an ideal electron gas, at various values of
T /TF, has been plotted versus k /kF. The origin of the two
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FIG. 5. Scor, Dcor, and C of liquid helium versus the correlation
parameter �0. The values of Scor are divided by 10 and the values of
C by 100. The lines correspond to the expressions �39�–�41�, with
the parameters derived by the least-squares fit method.
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effects �correlations and temperature� is different and it is
seen that they influence in a different way the momentum
distribution. So, it may be appropriate to study qualitatively
and also quantitatively the above effects on the various in-
formation measures and complexity.

The calculated values of Sthermal for various values of the
temperature in the low energy limit �T�TF� are shown in
Fig. 6. It is seen that Sthermal is an increasing linear function
of the temperature. The linear equation

Sthermal = �
T

TF
, � = 2.5466 �52�

reproduces very well the calculated values of Sthermal. That
expression of the information entropy is similar to the ex-
pression, which gives the thermodynamical entropy, STE, for
T�TF. STE in the low temperature limit has the form �57,59�

STE =
�2

2
NkB

T

TF
. �53�

From Eqs. �52� and �53�, we can find a relation between the
two entropies in the limit T�TF. The corresponding relation
is of the form

Sthermal =
2�

�2

STE

NkB
. �54�

The calculated values of Dthermal, displayed in Fig. 6, are well
reproduced by the formula

Dthermal = e−1.647�T/TF�. �55�

Finally, the calculated values of C as a function of T /TF
are shown in Fig. 6. C is an increasing function of T /TF and
exhibits a linear trend, which is fairly reproduced by the
relation

C = 1 + 0.962
T

TF
. �56�

B. Classical regime (TšTF)

In the classical case �where the density is low and/or the
temperature is high and it is assumed that n�k��1�, relations
can also be established between the information measures
and complexity with temperature. In that case, the momen-
tum distribution has the Gaussian form �58�

n�k� = 
 a

�
�3/2

e−ak2
, a =

�2

2mkBT
, �57�

and is normalized as �n�k�dk=1. The above expression is
also written as

n�k� = 
1

�

1

�kF
2 �3/2

e−k2/kF
21/�, � = T/TF. �58�

From Eqs. �48� and �58�, the following relation, connecting
Sthermal with the temperature, can be found �16�:

Sthermal =
3

2
+ ln

3�1/2

4
+

3

2
ln

T

TF
. �59�

Additionally, we can also obtain Dthermal from the expression

Dthermal =
21/2

3�1/2
 T

TF
�−3/2

. �60�

From Eqs. �59� and �60�, we find that

C = Cthermal = eSthermalDthermal = 
 e

2
�3/2

� 1.5845. �61�

The physical meaning of Eq. �61� is very clear. For high
values of temperature �T�TF�, where the momentum distri-
bution of the gas is described by a Gaussian function, the
complexity C is independent of T and takes a constant value.
Our finding shows that the case of an ideal Fermi gas at T
�TF is in contrast to the case of correlated Fermi gas at T
=0, where, in general, C is not an upper bounded function.
Moreover, the complexity has different trend in the quantum
mechanical limit �T→0� compared to the classical limit �T
→�. In the classical limit, C is not affected by the tempera-
ture variation and is a constant of the system. However, for
low values of T, complexity exhibits strong temperature de-
pendence.

In Fig. 6, we plot the complexity versus �=T /TF both for
low and high values of temperature. Actually, we calculate
the chemical potential for each value of � and consequently,
we know exactly the momentum dependence of the occupa-
tion numbers given in Eq. �42�. The results confirm the nu-
merical approximation of C given in Eq. �56� for low values
of � as well as the analytical prediction of Eq. �61� for high
values of �.

It is worthwhile to notice that the temperature dependence
of C is similar to that of the specific heat CV in an ideal
Fermi gas �59�. More precisely, CV is a linear function of T
for T�TF, while it approaches 3 /2NkB as T→ �59�. In
order to illustrate the above result we display in Fig. 7 the
dependence of C and the specific heat CV on T �in units TF�.
This behavior can be explained as follows: let us consider
two momentum distributions n�k�, one for T=0 and another
one for T
0. They are in essence different, because for T
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0, a certain number of fermions are excited above the
Fermi level �F. Specifically, fermions with energies on the
order of kBT below �F are excited to energies on the order of
kBT above �F. However, this holds only for fermions with
energies within about kBT of the Fermi level, while those
with other values of energy have no place to go—the states
are occupied �60�.

To sum up, thermal effects lead to a blurring of the Fermi
surface that means the distribution function n��� drops over
the range �F�kBT. As a consequence, in the case of low
temperature limit, only the momentum distribution �or the
occupation number� close to the Fermi surface is affected by
T and this leads to a linear dependence of C on T. For T
�TF, the momentum distribution is affected for both low
and high values of k in such a way so that the complexity C
tends to a constant.

IV. CONCLUSIONS

In the present work, the recently proposed statistical mea-
sure of complexity C has been an issue under consideration.
Information theoretical measures �information entropy and
disequilibrium� as well as a statistical measure of complexity
C have been calculated, in momentum space, for realistic
Fermi systems, that is nuclear matter, electron gas, and liquid
helium. The dependence of the above measures on the
strength of the correlations has been analyzed and displayed.
From the present analysis, it should become clear that the
values of the above quantities could be used as a measure of
the particle correlations of Fermi systems. We have found
that the complexity is an increasing function of the correla-
tions both for nuclear matter and liquid helium as expected
intuitively. However, in the case of electron gas, complexity
exhibits a different slope and in fact, the function of C�rs�
has a maximum for a specific value of the correlation param-
eter rs. Additionally, we have found the interesting result that
for very strong correlations, where electron gas undergoes
Wigner crystallization, the complexity is independent of the
correlations and takes a constant value. In order to have a
common measure of the various information properties, we
have displayed them as a function of the discontinuity gap,
�1−ZF�. The most distinctive feature of the above analysis,

in the various systems, is the different behavior exhibited by
Scor, Dcor, and C as functions of �1−ZF�. For the same values
of �1−ZF�, both the values and the trend of these quantities
are different in the various systems. Considering that, under
certain circumstances, ZF can be estimated experimentally,
we obtain a first indication that information properties may
be related with experimental results.

Temperature also affects the momentum distribution of an
ideal Fermi gas and consequently all the related information
properties. We have found that for low values of the ratio
T /TF, the complexity is a linear function of T. However, in
the high temperature limit �the well-known classical
Maxwell-Boltzmann distribution�, complexity is independent
of T and takes a fixed value �exactly the same as in the case
of Wigner crystallization�. Thus, regardless of the reason that
causes the momentum distribution to exhibit Gaussian type
dependence on the momenta k, the value of the complexity is
constant. Furthermore, we have seen that the temperature
dependence of C is similar to that of the specific heat CV in
an ideal Fermi gas �59�, both for low and high values of T.
This is a second indication that one can relate the statistical
measure of complexity C with experimental data �as the spe-
cific heat CV�. However, further work is called for before we
establish a clear connection between information theoretical
measures and experimental data.

As an epilogue, we would like to mention that physicists
have been carrying out research for decades, going beyond
the mean-field description of quantum many-body systems,
by taking into account correlations among particles, a very
important factor indeed toward a better understanding of
these systems. The effect of correlations is connected intu-
itively with the concept of complexity, in a qualitative and
somehow vague way. The present work contributes to a
quantification of complexity C in correlated Fermi systems,
based on previous research for the information entropy of the
same systems �16�. It turns out that C�T� and the specific
heat CV�T� are similar functions of the temperature T as seen
in Fig. 7�a�. In Fig. 7�b�, we plot CV�C�. The dependence of
CV on C is approximately linear. In fact, there appear two
regions of linear dependence with a different slope, separated
by a cross. The fitted expressions are CV=−1.7353
+1.7114C �region A� and CV=−6.3777+5.0783C �region B�.
In a sense, one may state that CV�T� can serve as an index

0 1 2 3 4 5
0.0

0.4

0.8

1.2

1.6

C
,C

V

T/T
F

C
C

V

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.4

0.8

1.2

1.6

+

B

A

C
V

C(b)(a)

FIG. 7. �a� The complexity C and the specific heat CV �in units kBN� of an ideal electron gas versus the ratio T /TF. �b� The specific heat
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reflecting the expected increase in complexity as T increases.
Furthermore, it is seen that for temperatures T�TF, com-
plexity reaches a plateau �saturation�, i.e., it can no longer
increase. The textbook definition of the specific heat is the
measure of heat energy required to increase the temperature
of a unit of quantity of a substance by a unit degree. It is
noted that here, we observe an empirical connection of such
an “energylike” quantity with complexity C calculated em-
ploying information entropy, which is not related directly to

the energy of the system in contrast to the traditional concept
of thermodynamic entropy.
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